Komplanar - Kollinear - Vektoren

Neue Frage »

Plat Auf diesen Beitrag antworten »
Komplanar - Kollinear - Vektoren
Hallo!

Ich hab wieder mal ein Problem. traurig
Wir sollen ein Parallelogram im 3Dimensionalen Raum "zeichnen" besser gesagt denken,ABER es soll NICHT Parallel zu den Ebenen sein. Danach sollen wir zeigen, dass es
1. Komplanar ist, also auf einer Ebene liegt und
2. das die gegenüberlöiegenden Seiten Kollinär sind (Parallel)

Dazu sollen wir uns 4 Punkte A-D DENKEN die ein Parallelogramm ergeben sollen
ich hab hier mal welche
A(5|1|0)
B(10|1|0)
C(10|4|6)
D(5|4|6)

Und wie weiter?

Sind meine Punkte auch in Ordnung?

DANKE im Voraus!
maxxchen Auf diesen Beitrag antworten »
RE: Komplanar - Kollinär - Vektoren
Um zu testen ob deine Punkte stimmen, muss folgendes stimmen:
|AB| = |CD|
|AD| = |BC| und
AC muss BD halbieren und andersrum. (Nachweis eines Parallelogramms)

Schnapp die 3 Punkte, schau dass sie nicht auf einer Geraden liegen und bastel daraus eine Ebene, dann überprüfe, ob der 4 Punkt in dieser Ebene liegt. Wenn ja, hast du schonmal ein Parallelogramm in einer Ebene Augenzwinkern

Weißt du wie man Parallelität bei Vektoren nachweist? VektorA = X*VektorB
Parallel sind die beiden Vektoren wenn X immer gleich groß ist Also:
xa = X*xb
ya = X*yb
za = X*zb

Gruß Maxx
 
 
Leopold Auf diesen Beitrag antworten »

Es genügt vollständig, wenn man



nachweist.

(Es heißt übrigens kollinear und nicht "kollinär".)
reakaos Auf diesen Beitrag antworten »

Ansage

es reicht auch wenn du von drei vektoren aus den punkten kreirst und dann ein spatprodukt aufstellst . das müsste dann 0 ergeben - beweis das sie in einer ebene liegen - komplanar
Neue Frage »
Antworten »



Verwandte Themen

Die Beliebtesten »
Die Größten »
Die Neuesten »