newtheorem , newenvironment Modifikationen

Neue Frage »

Jeremy124 Auf diesen Beitrag antworten »
newtheorem , newenvironment Modifikationen
Hallo Leute, ich arbeite gerade
an einer Umgebung, die ich gerne benutzen möchte.

Es klappt schon ganz gut. Nur möchte ich nach den Titeln einen Punkt haben.

Also:

Lemma 1.

Theorem 3.

Auch möchte ich für die Definitionen einen Punkt, aber davor noch eine Nummerierung.

Danke für eure Hilfe Freude

_________________________________________________________________

Aus einer von TeXworks gegebener Vorlage, ist bisher folgendes entstanden:

\documentclass[12pt]{article}

\usepackage{amssymb}

\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{proposition}{Proposition}


\newenvironment{proof}[1][Proof]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}]}{\end{trivlist}}
\newenvironment{definition}[1][Definition]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}]}{\end{trivlist}}
\newenvironment{example}[1][Example]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}]}{\end{trivlist}}
\newenvironment{remark}[1][Remark]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}]}{\end{trivlist}}

\newcommand{\qed}{\hfill \ensuremath{\Box}}

\title{Brief Article}
\author{The Author}
%\date{} % Activate to display a given date or no date (if empty),
% otherwise the current date is printed

\begin{document}
\maketitle

\section{First section}

\begin{definition}
Let $H$ be a subgroup of a group~$G$. A \emph{left coset}
of $H$ in $G$ is a subset of $G$ that is of the form $xH$,
where $x \in G$ and $xH = \{ xh : h \in H \}$.
Similarly a \emph{right coset} of $H$ in $G$ is a subset
of $G$ that is of the form $Hx$, where
$Hx = \{ hx : h \in H \}$
\end{definition}

Note that a subgroup~$H$ of a group $G$ is itself a
left coset of $H$ in $G$.

\begin{lemma}
\label{LeftCosetsDisjoint}
Let $H$ be a subgroup of a group $G$, and let $x$ and $y$ be
elements of $G$. Suppose that $xH \cap yH$ is non-empty.
Then $xH = yH$.
\end{lemma}

\begin{proof}[Proof of Lemma 1]
Let $z$ be some element of $xH \cap yH$. Then $z = xa$
for some $a \in H$, and $z = yb$ for some $b \in H$.
If $h$ is any element of $H$ then $ah \in H$ and
$a^{-1}h \in H$, since $H$ is a subgroup of $G$.
But $zh = x(ah)$ and $xh = z(a^{-1}h)$ for all $h \in H$.
Therefore $zH \subset xH$ and $xH \subset zH$, and thus
$xH = zH$. Similarly $yH = zH$, and thus $xH = yH$,
as required. \qed
\end{proof}

\begin{lemma}
\label{SizeOfLeftCoset}
Let $H$ be a finite subgroup of a group $G$. Then each left
coset of $H$ in $G$ has the same number of elements as $H$.
\end{lemma}

\begin{proof}
Let $H = \{ h_1, h_2,\ldots, h_m\}$, where
$h_1, h_2,\ldots, h_m$ are distinct, and let $x$ be an
element of $G$. Then the left coset $xH$ consists of
the elements $x h_j$ for $j = 1,2,\ldots,m$.
Suppose that $j$ and $k$ are integers between
$1$ and $m$ for which $x h_j = x h_k$. Then
$h_j = x^{-1} (x h_j) = x^{-1} (x h_k) = h_k$,
and thus $j = k$, since $h_1, h_2,\ldots, h_m$
are distinct. It follows that the elements
$x h_1, x h_2,\ldots, x h_m$ are distinct.
We conclude that the subgroup~$H$ and the left
coset $xH$ both have $m$ elements,
as required.\qed
\end{proof}

\begin{theorem}
\emph{(Lagrange's Theorem)}
\label{Lagrange}
Let $G$ be a finite group, and let $H$ be a subgroup
of $G$. Then the order of $H$ divides the order of $G$.
\end{theorem}

\begin{proof}
Each element~$x$ of $G$ belongs to at least one left coset
of $H$ in $G$ (namely the coset $xH$), and no element
can belong to two distinct left cosets of $H$ in $G$
(see Lemma~\ref{LeftCosetsDisjoint}). Therefore every
element of $G$ belongs to exactly one left coset of $H$.
Moreover each left coset of $H$ contains $|H|$ elements
(Lemma~\ref{SizeOfLeftCoset}). Therefore $|G| = n |H|$,
where $n$ is the number of left cosets of $H$ in $G$.
The result follows.\qed
\end{proof}

\begin{remark} Preceding proof is not trivial. \end{remark}

\end{document}
Neue Frage »
Antworten »



Verwandte Themen

Die Beliebtesten »
Die Größten »
Die Neuesten »