Dreieck

Neue Frage »

confirmas Auf diesen Beitrag antworten »
Dreieck
Meine Frage:
1.Die Geraden g, h und k mit g(x)=-0,8+1, h(x)=-4x+17 und k(x)=5/4x-4 bilden ein
Dreieck.
a) Berechne die Koordinaten der Eckpunkte des Dreiecks?
b) ist das Dreieck rechtwinklig?
c)Welche Länge haben die Dreickseiten?

2.wie bestimme ich diese Gleichung, wenn
die x-Achse bei x=2 unter einem Winkel von 20 Grad sich schneidet

3.Folgende 3 Punkte e(-1/-2), F(3.5/0,5) und G(1.5/3.5) sind Eckpunkte eines Parallelogramms. Fertige eine Zeichnung an, an der du erkennst, wo der vierte Eckpunkt H liegt und bestimme die Koordinaten.
a) Berechne die Geradengleichungen der vier Geraden, auf denen die Seite des Parallelogramms liegen
b) Berechne die Größe des Innenwinkels des Parallelogramms
c) Bestimme die Länge der Diagonalen


Meine Ideen:
Die Aufgabe 1a habe ich verstanden wie rechnet man Aufgabe b und c aus?
bei der Aufgabe 2 habe ich die Steigung ausgerechnet doch wie rechnet man dann y und b heraus?
Bei Aufgabe 3 habe ich bereits a) ausgerechnet. bei b) dachte ich das ich das rechnen sollte:
tan(?)=yB?yA/B?xa
tan(?)=yD?yA/D?xa ist die Formel richtig? denn bei mir kommt nie die gewünschte Antwort heraus
Also wie dann
und bei d) habe ich keine Ahnung
DP1996 Auf diesen Beitrag antworten »

1. Bist du sicher, dass g(x)=-0,8+1 (fehlt da nicht noch ein x?)

1b Was gilt, wenn zwei lineare Funktionen senkrecht aufeinander stehen?

1c Wenn du die Koordinaten der Eckpunkte von 1a schon berechnet hast, sollte das eigentlich kein Problem sein. Eine Zeichnung, wenn du es dir nicht vorstellen kannst, und der Satz von Pythagoras helfen dir weiter.
 
 
confirmas Auf diesen Beitrag antworten »

das x kommt nach den -0,8 und zu deiner Frage von 1b weiß ich nicht, deswegen war ich mit nicht sicher ob ich dann den Satz des Pythagoras benutzen sollte. Falles es aber kein rechtwinkligen Dreieck ist, wie berechnet man es denn?
mathemambo Auf diesen Beitrag antworten »
RE: Dreiceck
1.) Für den Fall, dass es nicht rechtwinklig ist benutzt du dafür den Kosinussatz.

2.) Du hast doch einen Punkt angegeben nämlich (2|0). (Schnittpunkt mit der x-Achse bei x=2)
Den Punkt setzt du in die GeradenGleichung ein y = m x + b und formst nach b um.
DP1996 Auf diesen Beitrag antworten »

Es gibt einen Satz, der besagt, dass wenn zwei lineare Funktionen senkrecht aufeinander stehen, das Produkt ihrer Steigungen -1 ist. Das kannst du verwenden, um herauszufinden, ob es in deinem Dreieck einen rechten Winkel gibt. D.h. du musst dafür gar nicht die Längen der Seiten kennen, um dann Pythagoras anzuwenden. Es genügen die Funktionsgleichungen.

edit: @ mathemambo: Dein Post war sicher gut gemeint, doch zum einen war hier bereits ein Helfer, zum anderen war die Aufgabe 1 noch nicht mal vollständig geklärt, zu diesem Zeitpunkt schon mit einem Ratschlag für Aufgabe 2 zu kommen, kkann verwirren. Beachte auch in diesem Zusammenhang bitte das Boardprinzip.

Und in diesem Zusammenhang an den Fragesteller: Es empfiehlt sich, in Zukunft für jde Aufgabe einen extra Thread zu öffnen, bzw. eine Frage nach der anderen zu stellen.

edit3: Eigentlich war dieser Ratschlag für zukünftige Fragen gedacht.
marie1234 Auf diesen Beitrag antworten »

Wie berechnet man denn Aufgabe 1a?
Ich habe nämlich auch die Aufgaben auf, und ich weiß nicht wie man 1a berechnet.
Grüße
opi Auf diesen Beitrag antworten »

Keine eigene Idee? Dann mache Dir eine grobe Skizze und Du wirst sehen, wie die Geraden das Dreieck bilden und woraus die Eckpunkte des Dreiecks bestehen.
Neue Frage »
Antworten »



Verwandte Themen

Die Beliebtesten »
Die Größten »
Die Neuesten »