Auflösung einer trigonometrischen Gleichung gesucht

Neue Frage »

Fionax Auf diesen Beitrag antworten »
Auflösung einer trigonometrischen Gleichung gesucht
Meine Frage:
Meine Gleichung lautet:



Aufzulösen ist die nach dem Winkel x.


Meine Ideen:
Leider komme ich damit überhaupt nicht zurecht.
So was wie die Additionstheoreme bräuchte ich da. Nur hab' ich da leider nichts gefunden.

Bitte, kann mir da mal jemand helfen?

Fiona
Fionax Auf diesen Beitrag antworten »

zur Ergänzug:

Ich komme gerade mal bis zu:


Dann geht's nicht weiter.
Ob ich's mal mit Wolfram probier'?


grüsse Fiona
 
 
adiutor62 Auf diesen Beitrag antworten »

Das dürfte heftig werden:7
http://www.wolframalpha.com/input/?i=A%3...E2x+solve+for+x
HAL 9000 Auf diesen Beitrag antworten »

Interessant, was Wolfram da so anstellt ... wenn ich mir vorstelle, einfach in die Gleichung einzusetzen, dann sieht mir das nach einer einfachen quadratischen Gleichung in aus. smile
Fionax Auf diesen Beitrag antworten »

@ gehilfe62:

'7' ? Windstärke 7, meinst Du wohl?

@HAL9000:

Das probier' ich mal und hoffe!


grüsse Fiona
HAL 9000 Auf diesen Beitrag antworten »

Ok, zur Verteidigung von Wolfram muss man sagen, dass bei einer vollständigen Betrachtung einige Fälle zu unterscheiden sind:

Zum einen , zum anderen gemäß Vorzeichen der Diskriminante der quadratischen Gleichung.
Fionax Auf diesen Beitrag antworten »

@HAL9000:

Immerhin, HAL, habe ich da jetzt ein Ergebnis. Wie sieht man so etwas nur?
Weiss jetzt nur nicht, ob das soweit o.k. ist. Ich schreibs' mal hier hin:




Das sollt stimmen?


Fiona
HAL 9000 Auf diesen Beitrag antworten »

Hmm, Substitution führt zur quadratischen Gleichung mit den Lösungen

, sofern sowie gilt,

und dann ist da ja auch noch die Rücksubstitution...
Fionax Auf diesen Beitrag antworten »

@ HAL9000:


- Hmm? 2C im Nenner?

- Ähm. Rücksubstitution? Das versteh' ich jetzt nicht so ganz?


grüsse Fiona
HAL 9000 Auf diesen Beitrag antworten »

Zitat:
Original von Fionax
- Hmm? 2C im Nenner?

Du kannst auch gern weiter mit deiner falschen Lösung arbeiten. Forum Kloppe
Fionax Auf diesen Beitrag antworten »

HAL:


--- Rücksubstitution?


Danke! Du hast mich auf die richtige Spur gesetzt!


ciao Fiona
HAL 9000 Auf diesen Beitrag antworten »

Wenn du die quadratische Gleichung löst, kriegst du die raus, nicht die ursprünglich gesuchten !

D.h., für jede Lösung der quadratischen z-Gleichung (falls es überhaupt reelle Lösungen gibt) ist in der Rücksubstitution die Gleichung zu lösen, das ergibt die unendlich vielen Lösungen

für

der x-Originalgleichung.
Fionax Auf diesen Beitrag antworten »

@ HAL9000:


Ja, jetzt nachdem ich die Integralgrenzen angepasst habe, da läuft alles wie am Schnürchen!

in dem Sinne Fiaona
HAL 9000 Auf diesen Beitrag antworten »

Da hier in der geschilderten Problemstellung bisher keine Rede von Integralen war, müssen wir diese Bemerkung wohl nicht verstehen. Augenzwinkern
Neue Frage »
Antworten »



Verwandte Themen

Die Beliebtesten »
Die Größten »
Die Neuesten »