Ebene aus Gerade und Punkt.

Neue Frage »

ExElNeT Auf diesen Beitrag antworten »
Ebene aus Gerade und Punkt.
Ich möchte eine Ebene aus einem Punkt und einer Geraden erstellen, also Punkt und Gerade sollen in der Ebene enthalten sein.

Punkt und Gerade sind in Parameterform und die Ebene soll es dann auch sein.

Kann mir jemand auf die Sprünge helfen? Ein Beispiel wäre nicht schlecht.

danke mfg
ExElNeT
therisen Auf diesen Beitrag antworten »

Stell dir das doch mal räumlich vor:

Du hast einen Punkt P im Raum gegeben und außerdem verläuft durch den Raum noch eine Gerade. Für die Ebene brauchst du nun einen Aufhängepunkt A und zwei nicht kollineare Richtungsvektoren v und w. Der Einfachheit halber nimmst du jetzt einfach den Aufhängepunkt A deiner Geraden und deren Richtungsvektor v. Jetzt brauchst du noch einen weiteren Richtungsvektor (w) mit dem du den Punkt P von A aus erreichen kannst, denn es sollen ja alle Punkte der Geraden in der Ebene sein und der Punkt P soll auch enthalten ("erreichbar") sein. Wie also bestimmst du dein w?


Gruß, therisen
 
 
brunsi Auf diesen Beitrag antworten »

ich weiß es!!! Tanzen

ist ganz einfach therisen hat in seinen ausführungen schon versteckt den hinweis geliefert. steckt im vorletzten satz!!
ExElNeT Auf diesen Beitrag antworten »

hehe ich auch jetzt smile ich habe wohl gestern etwas zuviel mathe gemacht ... irgendwann blickt man selbst bei den leichten sachen nichtmehr durch Augenzwinkern

man muss richtungsvektor zwischen dem punkt auf der ebene und dem punkt der geraden bilden ... also punkt der auf der ebene liegen soll minus punkt der geraden ...


jetzt suche ich gerade nach einfachem umwandeln von paramterform nach ax +by+cz +d =0 form der ebene und zurück.

mfg
brunsi Auf diesen Beitrag antworten »

verwende mal die boardsuche, hier gibt es zumindet eine aufgabe an die ich mich erinnern kann, wo so etwas zu tun ist.

suche gleichzeitig auch nach dem nick Skyfighter, der hatte hier nämlich mal sehr viele aufgaben reingestellt wo so etwas verlangt wurde.
Mathespezialschüler Auf diesen Beitrag antworten »

Verschoben
ExElNeT Auf diesen Beitrag antworten »

ich habe gerade eine sehr nützliche folie zu diesem thema gefunden

www.math.tu-berlin.de/~hennings/tutorium_10.pdf

nach dieser sollte es einfach das kreuzprodukt der richtungsvektoren a b und c sein und d wird dann der ortsvektor der ebene * dem normalenvektor.
Neue Frage »
Antworten »



Verwandte Themen

Die Beliebtesten »
Die Größten »
Die Neuesten »