Wahrscheinlichkeitsberechnung (x treffer hintereinander bei n würfen)

Neue Frage »

behdahh Auf diesen Beitrag antworten »
Wahrscheinlichkeitsberechnung (x treffer hintereinander bei n würfen)
Meine Frage:
Hi, ich google mir schon die Finger wund, finde jedoch keine passende Formel für diese Problemstellung: Es werde eine Münze n mal geworfen. Wie hoch ist die wahrscheinlichkeit x mal Kopf hintereinander zu bekommen?

Beispiel für n=10 und x=3: Ich werfe die Münze 10 mal, wie hoch ist nun die Wahrscheinlichkeit 3 mal Kopf hintereinander zu bekommen (nicht jedoch 4 mal hintereinander - also genau 3 mal)?

Meine Ideen:
Wäre n=x wo wäre das keine Problem, aber bei dieser Aufgabenstellung verbiegt sich irgendiwe mein Gehirn.
ObiWanKenobi Auf diesen Beitrag antworten »

Die "Anzahl Mögliche" ist dir klar?

Hast Du eine Idee wie du zur "Anzahl günstige" finden könntest

Frage zur Fragestelllung:

wenn x= 3 ist soll dann z.B.

ZKKKZKKKKZ

eine gültige Lösung sein oder nciht? Will sagen: Wenn an einer Stelle eine Abfolge von genau x*K kommt (also StartKKKZ; oder ZKKKZ oder ZKKKEnde) ist dann für den Rest der Zehnerfolge die Abfolge egal?
behdahh2 Auf diesen Beitrag antworten »

ZKKKZKKKKZ wäre gültig, ja. Der Rest der Abfolge ist egal. KKKKZZZZZZ wäre jedoch nicht ok, da es ja nicht genau 3 sondern 4 hintereinander wären.
ObiWanKenobi Auf diesen Beitrag antworten »

Ok! Wenn der Rest der Abfolge egal ist kannst du es so betrachten:


E = Egal steht immer für (K oder Z)

2 Fälle:

(I)

KKKZEEEEEE sowie EEEEEEZKKK

(II)

ZKKKZEEEEE; EZKKKZEEEE; EEZKKKZEEE; EEEZKKKZEE; EEEEZKKKZE; EEEEEZKKKZ

Bei (I) Gibt es jeweils 6 frei zu belegende Positionen also 2^6 Möglichkeiten

Bei (II) Gibt es jeweils 5 frei zu belegende Positionen also 2^5 Möglichkeiten

Die Summe ist "Anzahl Günstige"
wisili Auf diesen Beitrag antworten »

@ObiWanKenobi
Du bekommst so etwas zuviel. Schon die Muster (I) und (II) haben nichtleeren Schnitt bzw. (I) ist Teilmenge von (II). Es gibt aber noch andere Ueberlappungen.
ObiWanKenobi Auf diesen Beitrag antworten »

@ wisili

Uuuups Klaro! Denkfehler!

Ich glaube die Grundidee ist brauchbar. Suche nach einer Verbesserung.

Wenn Du schneller bist ....häng dich rein!
 
 
wisili Auf diesen Beitrag antworten »

Dreimal KKK ist bei der Länge 10 wegen der nötigen Trenn-Z ja nicht möglich, aber zweimal. Somit müssen diese Muster mit 2 mal KKK separat studiert werden. Die Verallgemeinerung von 10 auf n ist damit noch nicht geschafft, aber angedeutet.
AD Auf diesen Beitrag antworten »

Es sei

... vom -ten bis zum -ten Wurf kommt Kopf

Ist nun die Maximalanzahl durchgehender Würfe mit Ergebnis Kopf, dann gilt



Die Ereignisse sind dabei unabhängig, sofern die Indizes jeweils um mindestens Einheiten voneinander entfernt sind. Wären die in ihrer Gesamtheit unabhängig (also so, wie es im Fall tatsächlich der Fall ist), dann könnte man so weiter rechnen:

,

d.h. dann auch

.

Tatsächlich ist das zumindest im Fall eine ganz passable Näherung. Eine exakte Rechnung (also unter Berücksichtigung der Abhängigkeit für "nahe" aneinander liegende Indizes) ist ziemlich aufwändig, für kleine mit Hilfe der Siebformel aber immerhin noch möglich.
ObiWanKenobi Auf diesen Beitrag antworten »

@ Arthur

Habe ich das jetzt richtig verstanden, dass Deine Berechnung davon ausgeht, dass es im Gesamtstring keine K-Ketten gibt die länger als x sind?

Ich gehe davon aus, dass es nur mindestens eine K-Kette von genau Länge X geben muss. Ob es zusätliche K-Ketten der Länge >= x gibt ist egal.
AD Auf diesen Beitrag antworten »

Zitat:
Original von ObiWanKenobi
Ob es zusätliche K-Ketten der Länge >= x gibt ist egal.

Du meinst <= x, oder? Bei meiner Rechnung - besser: Approximation - auch.
ObiWanKenobi Auf diesen Beitrag antworten »

ich meine Ketten die mehr als x Ks hintereinander haben.

Ich fragte den Threaderöffner ganz zu Anfang ob bei der Suche nach x=3 z.B. folgende Kette erlaubt sei:

ZKKKZKKKKZ

Er schrieb das sei OK solange nur gewährleistet sei, dass der Gesamtstring mindestens eine Kette der Länge von genau x enthält.
AD Auf diesen Beitrag antworten »

Ah Ok, da habe ich das sehr schlecht durchgelesen - Entschuldigung. Es geht also darum, dass es eine K-Kette genau der Länge gibt und es vorher keine längere K-Kette gibt. Eine ziemlich ungewöhnliche Variante, aber warum nicht. Augenzwinkern
ObiWanKenobi Auf diesen Beitrag antworten »

Ich finde auch, dass die "Eindeutigkeit" der Fragestellung zu wünschen übrig lässt.

Ich verstehe es sogar noch weiter gefasst:

Auch vor der Kette der Länge x darf eine Kette der Länge x+y sein, solange nur gewährleistet ist, dass irgendwo im Sting eine Abfolge kommt der Art:

Z x*K Z

Es gibt also immer 3 "Möglichkeiten" der Bedingung zu genügen

(I) Der String bekinnt mit x*k unmittelbar gefolgt von mindestens einem Z
(II) Der String endet mit Z x*K
(III) An einer beliebigen Stelle des Strings findet sich die Folge Z x*K Z
AD Auf diesen Beitrag antworten »

Also gut, es geht um Wurffolgen, wo es mindestens eine K-Kette genau der Länge gibt, egal was der Rest macht, nehmen wir mal an. Ähnlich oben definiere ich

... die K-Kette beginnt an Position

Gesucht ist dann . Berechenbar ist das mit der Siebformel, wenn auch nicht einfach:


Klar ist für sowie am Rand .

Betrachten wir nun mal für . Diese Wahrscheinlichkeit ist gleich Null, sofern es zwei "zu nahe" Indizes gibt, d.h. ein mit . Andererseits ist sie gleich dem Produkt der Einzelwahrscheinlichkeiten, wenn für alle gilt (keine Überlappungen, auch nicht der Trenn-Z). Im Falle muss man das modifizieren - das entspricht dem Fall von einem gemeinsames Trenn-Z zwischen zwei K-Ketten der Länge .


------------------------------

Bleiben wir mal bei :

Da ist also sowie .

Nun die Zweierdurchschnitte (dabei steht (i,j) für ):

(2,7):

(1,6), (1,7), (2,8), (3,8), (2,6), (3,7): jeweils

(1,8), (1,5), (4,8): jeweils

Dreierdurchschnitte mit positiver Wahrscheinlichkeit gibt es hier nicht, da die wg. KKKZKKKZKKK mindestens 11 Würfe benötigen. Ergibt also nach Siebformel





EDIT: Für allgemeine müsste die monströse Formel



stimmen - ohne Gewähr der Richtigkeit, und erst recht keine Gewähr auf evtl. mögliche Vereinfachung dieser Formel. Augenzwinkern

EDIT2: Nach Bruteforce-Verifizierung für ausgewählte bis zu bin ich mir jetzt doch relativ sicher, dass die Formel richtig ist.
Mystic Auf diesen Beitrag antworten »

Zitat:
Original von Arthur Dent
EDIT: Für allgemeine müsste die monströse Formel



stimmen - ohne Gewähr der Richtigkeit, und erst recht keine Gewähr auf evtl. mögliche Vereinfachung dieser Formel. Augenzwinkern


Ja, die Formel ist wahrlich monströs und ich hab ehrlich gesagt schon ein Problem damit, sie rein formal zu verstehen... Augenzwinkern (Was bedeutet z.B. auf der rechten Seite bzw. auch ?)

Immerhin kann ich eine rekursive Berechnungsmöglichkeit anbieten, "quick and dirty" und ohne explizite Formel, dafür leicht programmierbar... Nachfolgend die Berechnung der "günstigen Fälle" zu gegebenem n und x>1 in DERIVE...

a(n, x) := IF(n < x, 0, IF(n < x + 3, [1, 2, 5] sub (n - x + 1), a(n - 1, x) + 2a(n - 2, x) - a(n - x - 1, x) + a(n - x - 3, x) + 2^(n - x - 2) + 2^(n - x - 3)))

Denke, der Code ist self-explanatory, wenn gewünscht, liefere ich auch die Erklärung für die verwendete Rekursion nach... Hier zur besseren Überprüfbarkeit auch noch einige Ergebnisse (0-basiert!)

VECTOR(a(k, 2), k, 0, 12) = [0, 0, 1, 2, 5, 11, 25, 55, 120, 258, 550, 1163, 2444]
VECTOR(a(k, 3), k, 0, 12) = [0, 0, 0, 1, 2, 5, 12, 27, 61, 135, 295, 639, 1372]
VECTOR(a(k, 4), k, 0, 12) = [0, 0, 0, 0, 1, 2, 5, 12, 28, 63, 141, 311, 679]
VECTOR(a(k, 5), k, 0, 12) = [0, 0, 0, 0, 0, 1, 2, 5, 12, 28, 64, 143, 317]

Edit: Ok, denke ich hab's verstanden, der zweite Summand in deiner Formel tritt nur im Fall der Teilbarkeit von n-x durch x+1 auf und dann auch mit sinnvollem Vorzeichen... Augenzwinkern
AD Auf diesen Beitrag antworten »

Zitat:
Original von Mystic
Was bedeutet z.B. auf der rechten Seite bzw. auch ?)

Ja, da hab ich auch eine Weile überlegt, ob das zumutbar ist:

Die "1" steht wie üblich für Indikatorfunktion, hier für die Eigenschaft, wenn durch teilbar ist - hättest wenigstens du als Zahlentheorie-Experte doch erahnen können. Dieser Term ist nur für den Ausnahmefall nötig, dass alle K-Ketten dicht aneinandergepackt sind, wie etwa im Fall die Dreier-Sequenz:



Und wenn diese Teilbarkeit vorliegt, dann ist natürlich auch der Vorzeichenterm ein gültiges reelles Konstrukt. Big Laugh


P.S.: ...ach ja, und danke, dass du dir die Formel wenigstens angeschaut und kommentiert hast. Ich habe irgendwie das Gefühl, dass ich alle bisherigen Threadteilnehmer mit dieser Formel verschreckt habe - was gar nicht nötig ist: Es ist eben noch kein Siebformel-Meister vom Himmel gefallen. Auf Wunsch erläutere ich auch noch genauer das Zustandekommen aller Formelbestandteile (sehr grob skizziert habe ich es ja schon oben), aber ich schreibe natürlich nicht für leeres Publikum. smile
Mystic Auf diesen Beitrag antworten »

Sorry, hab auf's "Umblättern" vergessen, und nicht gesehen, dass du ohnehin sofort geantwortet hast... Ja, diese Deutung als Indikatorfunktion ist tatsächlich recht naheliegend, da hab ich einfach zuwenig darüber nachgedacht... Hammer

Was diie Formel betrifft, so genügt es mir eigentlich, wenn ich weiss, wie ich sie zu Prüfzwecken eingeben muss.... So wie sie aussieht, glaube ich ohnehin, dass die Siebformel in gewisser Weise nicht der "natürlichste Zugang" zu ihr ist, sondern dass man möglicherweise mit Hilfe von erzeugenden Funktionen besser sieht, wie sie zustande kommt... Im Moment fehlt mir allerdings die Zeit, den Beweis für diese Behauptung anzutreten, falls sie denn überhaupt zutrifft...
AD Auf diesen Beitrag antworten »

Zitat:
Original von Mystic
So wie sie aussieht, glaube ich ohnehin, dass die Siebformel in gewisser Weise nicht der "natürlichste Zugang" zu ihr ist

Das sehe ich ganz anders: Die Siebformel ist exzellent geeignet, die Sache hier zu erledigen. Wahrscheinlich bist du nur nicht so vertraut mit deren Anwendung.

Aber du kannst mich ja angenehm überraschen mit einer auf erzeugenden Funktionen basierenden einfacher strukturierten Formel.
behdahh3 Auf diesen Beitrag antworten »

Boah, das hätte ich mir nicht gedacht daß die Augabenstellung so eine komplizierte Formel erfoerdert. Ldeider verstehe ich weder die Formel und was ihr teilweise schreibt ist für meine bescheidnen Kenntnisse ledier oft zu hoch. An den Beispielen von Euch meine ich jedoch erkennen z können daß eventuell meine Angabe undeutlich oder irreführend war. Ich möchte daher noch einige Beispiele bringen um zu erlätern was gemeint ist:
Einfachste Variante: x=1, n=1
Wahrscheinlichkeit: 0,5

für x=1, n=2
Möglichkeiten: KK (treffer), KZ (treffer), ZK(treffer), ZZ(kein treffer)
Wahrscheinlichkeit: 0,75

für x=2, n=2
Möglichkeiten: KK (treffer), KZ (kein treffer), ZK(kein treffer), ZZ(kein treffer)
Wahrscheinlichkeit: 0,25

für x=2, n=3
Möglichkeiten: KKK(treffer), KKZ(treffer), KZK(kein trffer), KZZ(kein treffer), ZKK(treffer), ZKZ(kein treffer), ZZK(kein treffer), ZZZ(kein treffer)
Wahrscheinlichkeit: 3/8

Es spielt keine rolle ob ein oder mehrere Treffer vorhanden sind, oder ob sich der Treffer am Anfang, in der Mitte oder am Ande der Reihe befindet:
Beispiele für x=4, n=10:
KZZKKKKZKK (treffer)
KKKZKKZKKZ (kein treffer)
KKKKZZKZZZ (treffer)
ZZKKKKKKKZ (kein treffer weil hier x>4)

Beispiele für x=3, n=15:
ZZKZKKKZKKKZZKZ (hier gibts sogar 2 treffer, was aber keine weitere rolle spielen soll - zählt als treffer)
ZKKKKKZZKKKKZZZ (kein treffer weil x nirgendwo exakt 3 ist)

Leider kann ich die Aufgabenstellung nicht wissenschaftlicher Ausdrücken, aber ich hoffe die Beispiele führen zu mehr klarheit was gemeint ist.
Danke für Eure vielen Posts und Kommentare, hat mich echt gefreut schon nach so kurzer Zeit so viel Feedback zu bekommen.
lg,
Behdahh
AD Auf diesen Beitrag antworten »

Du widersprichst dich massiv selbst:

Zitat:
Original von behdahh3
Beispiele für x=3, n=15:
ZKKKKKZZKKKKZZZ (kein treffer weil x nirgendwo exakt 3 ist)

Aha, obwohl es Ketten der Mindestlänge 4 gibt, ist das bei dir kein Treffer.

Zitat:
Original von behdahh3
für x=1, n=2
Möglichkeiten: KK (treffer)

Wieso ist das dann aber ein Treffer - das ist eine Kette der Länge 2, nicht der Länge 1. unglücklich


Also denk nochmal genau nach, was du eigentlich willst. Erstaunt1
behdahh4 Auf diesen Beitrag antworten »

Zitat:
Du widersprichst dich massiv selbst:

Zitat:
Original von behdahh3
Beispiele für x=3, n=15:
ZKKKKKZZKKKKZZZ (kein treffer weil x nirgendwo exakt 3 ist)

Aha, obwohl es Ketten der Mindestlänge 4 gibt, ist das bei dir kein Treffer.

Zitat:
Original von behdahh3
für x=1, n=2
Möglichkeiten: KK (treffer)

Wieso ist das dann aber ein Treffer - das ist eine Kette der Länge 2, nicht der Länge 1.


Stimmt, da hat sich beim ersten Beispiel ein Fehler eingeschlichen, das ist natürlich kein treffer. Es müßte lauten:
für x=1, n=2
Möglichkeiten: KK (kein treffer)
Mystic Auf diesen Beitrag antworten »

Zitat:
Original von behdahh3
für x=2, n=3
Möglichkeiten: KKK(treffer), KKZ(treffer), KZK(kein trffer), KZZ(kein treffer), ZKK(treffer), ZKZ(kein treffer), ZZK(kein treffer), ZZZ(kein treffer)
Wahrscheinlichkeit: 3/8


Was soll das, warum ist KKK hier ein Treffer? geschockt Oh Mann, Arthur hat ja so recht, du weisst echt nicht was du willst... unglücklich

Da habe ich jetzt endlich die erzeugende Funktion für die usprüngliche Fragestellung gefunden, dass es mindestens eine Sequenz von K's mit der genauen Länge k geben sollte, nämlich

h(x, k) := 1/(1 - 2x) - (1/(1 - x) - x^k)/(1 - x/(1 - x) + x^(k + 1))

TAYLOR(h(x, 3), x, 0, 12) = 1372·x^12 + 639·x^11 + 295·x^10 + 135·x^9 + 61·x^8 + 27·x^7 + 12·x^6 + 5·x^5 + 2·x^4 + x^3

und dann kommst du daher und sagst, das war jetzt alles für die Tonne! Großartig! Forum Kloppe
AD Auf diesen Beitrag antworten »

Zitat:
Original von Mystic
und dann kommst du daher und sagst, das war jetzt alles für die Tonne!

Ruhig bleiben:

Wenn das mit dem KK im Fall x=1 kein Treffer war, dann ist wohl auch das KKK im Fall x=2 kein Treffer. Die Beispiele sind genauso schludrig ausgearbeitet wie die Aufgabenstellung. Wahrscheinlich ist also doch die Variante gemeint, die wir zuletzt alle diskutiert haben.

Außerdem kann man ja auch eine schöne Problemstellung an sich betrachten, und muss sich das ganze nicht von einem launenhaften Threadersteller vermiesen lassen. Augenzwinkern
Mystic Auf diesen Beitrag antworten »

Zitat:
Original von Arthur Dent
Wahrscheinlich ist also doch die Variante gemeint, die wir zuletzt alle diskutiert haben.


Ja, das könnte nach der ganzen Vorgeschichte gut so sein... Augenzwinkern

Hier also dann nochmals in schönerer LaTeX-Notation die erzeugende Funktion h(x,k) für die günstige Fälle bei der fraglichen Wahrscheinlichkeit, wenn dafür mindestens eine Sequenz der genauen Länge k gefordert ist, wobei ich aus naheliegenden Gründen das x aus der Aufgabenstellung in k umbenennen musste:



Theoretisch müßte man also zu deiner Formel gelangen, wenn man explizit den Koeffizienten von der Taylorreihe von h(x,k) für x=0 berechnet, aber einfach ist das sicher nicht... Big Laugh
AD Auf diesen Beitrag antworten »

Na dann noch viel Spaß dabei. Wie gesagt, ich bin mir mittlerweile sicher, dass die obige Formel richtig ist - nicht nur der Verifizierung für gewisse wegen, sondern auch in der theoretischen Begründung.
Mystic Auf diesen Beitrag antworten »

Zitat:
Original von Arthur Dent
Wie gesagt, ich bin mir mittlerweile sicher, dass die obige Formel richtig ist - nicht nur der Verifizierung für gewisse wegen, sondern auch in der theoretischen Begründung.


Das hatte ich auch nie ernstlich in Zweifel gezogen, schon gar nicht jetzt, wo ich sie mittlerweile auch in Derive eingegeben und für viele Werte auf Gleichheit mit meinen auf ganz anderem Wege hergeleiteten Ergebnissen überprüft habe...

Worum es mir eigentlich von Anfang an ging, war die Frage, ob eventuell noch einfacher gebaute explizite Formeln existieren... Meine diesbezüglichen Hoffnungen haben sich aber durch die eher komplizierte Bauart der oben angegebenen erzeugenden Funktion inzwischen auch verflüchtigt...
behdahh4 Auf diesen Beitrag antworten »

Ja, meine Beispiele waren wohl eher irreführend als richtig - wofür ich mich aufrichtig bei Euch entschuldigen möchte. Gott Trotzdem hat es Mystic geschafft die von mir gesuchte Formel zu finden, was unter den gegebenen Umständen sicherlich nicht einfach war - vielen lieben Dank, Du und alle die hier mitgemacht haben haben wir wirklich weitergeholfen.
lg,
Behdahh
Neue Frage »
Antworten »



Verwandte Themen

Die Beliebtesten »
Die Größten »
Die Neuesten »