Abadie constraint qualification

Neue Frage »

hhuu Auf diesen Beitrag antworten »
Abadie constraint qualification
Hallo Wink
In der Vorlesung steht eine Def.: Abadie constraint qualification\ erfüllt,falls
. (dh.Tangentialkegel=linearisierter Tangentialkegel)
und jetzt kommt meine Frage:
Betrachtet wird sas Optimierungsproblem

min

u.d.N



a) Weisen Sie nach, dass die Abadi constraint qualification im Punkt gilt.
b) Rechnen Sie nach , tatsächlich eine lokale Minimumstelle ist.
tigerbine Auf diesen Beitrag antworten »
RE: Abadie constraint qualification
Und, was ist nun die Frage? Du sollst wohl die beiden Kegel bestimmen.

Die Nebenbedingungen sind doppelt? verwirrt
 
 
hhuu Auf diesen Beitrag antworten »

wir haben drei N.b??
wie geht
tigerbine Auf diesen Beitrag antworten »

Ihr werdet doch eine Definition in der Vorlesung angegeben haben.

Zitat:

1.
1.
2.
hhuu Auf diesen Beitrag antworten »

ooo ich hab ninus vergessen,
zweite ist
tigerbine Auf diesen Beitrag antworten »

Dann schlage die Definitionen nach. Der linearisierte ist meist einfacher zu berechnen.
hhuu Auf diesen Beitrag antworten »

bitte wieso??
tigerbine Auf diesen Beitrag antworten »

So kommen wir nicht weiter. Das hier ist kein Chat. Ich habe dir gesagt, was du nachschlagen sollst. Da kommt nichts. unglücklich Wenn du dir die Definitionen angeschaut hättest, würdest du die Frage nicht stellen. Augenzwinkern

Schreibe die Definitionen hier hin, und deine Ansätze die Mengen konkret zu bestimmen. Es ist im Grunde nur zu zeigen, dass alle Elemente des lin. TK im TK liegen. Warum sollte klar sein. Augenzwinkern

Ich mache für heute Schluss.
hhuu Auf diesen Beitrag antworten »

ich schreibe mein Versuch

und unglücklich
tigerbine Auf diesen Beitrag antworten »

Nein. Diese Definitionen sind nicht korrekt / zu ungenau.
hhuu Auf diesen Beitrag antworten »

du meinst ,die Definition oben nicht zu abadi gehört geschockt
tigerbine Auf diesen Beitrag antworten »

Ich meine, dass ich von dir gerne einmal die korrekten Definitionen der beiden Kegel sehen möchte.
Neue Frage »
Antworten »



Verwandte Themen

Die Beliebtesten »
Die Größten »
Die Neuesten »