Laplace-Moivre Aufgabe

Neue Frage »

HansS Auf diesen Beitrag antworten »
Laplace-Moivre Aufgabe
Sie erfahren, dass durchschnittlich ein Drittel der Einwohner ein Auto
besitzt. Bestimmen Sie unter Benutzung des Grenzwertsatzes von
deMoivre/Laplace die Wahrscheinlichkeit dafür, dass unter 180 zufällig
ausgewählten Einwohnern der Insel
a) nicht mehr als 65 ein Auto besitzen;
b) mehr als 50, aber nicht mehr als 70 ein Auto besitzen.

Meine Lösung ist als Screenshot angehängt.

Es wäre nett, wenn jemand überprüfen könnte, ob Ansatz und Werte so stimmen.

Vielen Dank smile
identity Auf diesen Beitrag antworten »
RE: Laplace-Moivre Aufgabe
Zu Teil a) würde ich sagen das es richtig ist.

Bei Teil b) ist mir jedoch nicht bewusst (+0,5 und -0,5), warum 70+0,5-60 und 50-0,5-60.
Kasen75 Auf diesen Beitrag antworten »

@HansS

zu b)

Deine Formel für scheint mir nicht ganz schlüssig. Woher hast du sie ?

Außerdem hättest du trotzdem falsch eingesetzt. Gesucht ist

Grüße.
identity Auf diesen Beitrag antworten »
identity
hallo kasen75

warum 50 und 71?

es wird doch gesagt das mehr als 50 aber nicht mehr als 70 Personen

somit hätte ich gesagt
50 kleiner gleich X kleiner gleich 70

sonst wäre der teil bei a) in meinen augen auch falsch

könntest du mich bitte verbessern falls ich falsch liege und es mir begründen?
Kasen75 Auf diesen Beitrag antworten »

Hallo identity,
.
Wahrscheinlichkeit, dass X mehr als 50 ist ja und nicht .-
Insgesamt ergibt sich dann
HAL 9000 Auf diesen Beitrag antworten »

Kleiner Exkurs zur richtigen Anwendung der Stetigkeitskorrektur:

Für natürliche Zahlen und binomialverteilte berechnet man

,

d.h. man wandelt das Intervall zunächst so bzgl. ereignistreu (!) um, dass die Intervallgrenzen genau auf der Mitte zwischen zwei ganzen Zahlen liegen (d.h. "nnnn.5"), und wendet dann darauf die übliche Intervallwahrscheinlichkeit der Normalverteilung als die passende Approximation an.


Gemäß dieser Eselsbrücke ist dann entsprechend





.
 
 
HansS Auf diesen Beitrag antworten »

Hi,

die Formel habe ich hier her:
http://lehrerfortbildung-bw.de/faecher/m...e/01_naeherung/

Ist sie denn falsch?
Ich gehe nun von
P(50<x<71) aus.
Kasen75 Auf diesen Beitrag antworten »

@HansS

Meiner Meinung nach, wird dort falsch argumentiert. Dort wird nämlich mit der Dichtefunktion argumentiert. Es geht aber um die Verteilungsfunktion. Und hier Integriert man bis b+0.5, damit man das ganze Rechteck am Ende erwischt.

So oder so, würde ich bei den Formeln von Hal 9000 bleiben. Das ist eine gute Strategie.

Du kannst natürlich von ausgehen.
Meggo0 Auf diesen Beitrag antworten »

Hallo zusammen,

gibt es einen Unterschied bei der Anwendung (Wahrscheinlichkeiten), wenn ich die Formel ohne Stetigkeitskorrektur verwende? Oder bleibt dann die Formel gleich?

D.h. Egal ob ich beispielsweise p(a<X<b) oder p(a<=X<=b) oder p(a<X<=b) habe, meine Formel würde dann ohne Stetigkeitskorrektur immer so aussehen? (Siehe Dateianhang).

Was ist der Unterschied zwischen mit und ohne Stetigkeitskorrektur? Kann ich das frei wählen?

Danke für euer Bemühen.

Gruß
HAL 9000 Auf diesen Beitrag antworten »

Zitat:
Original von Meggo0
Kann ich das frei wählen?

Nein, wenn wir das Prinzip "Beliebigkeit" hier walten lassen, dann können wir die Bemühungen um möglichst hohe Genauigkeit (was ja das Motiv für die Anwendung der Stetigkeitskorrektur ist) auch gleich ganz sein lassen. unglücklich

Idee hinter der Stetigkeitskorrektur:

Approximiert man eine auf den ganzen Zahlen (oder einem Teilintervall davon) verteilte Zufallsgröße - wie etwa eine Binomialverteilung - durch die Normalverteilung mit zugehöriger dann stetig verteilter Zufallsgröße - was zumeist über den Zentralen Grenzwertsatz (ZGWS) geschieht - dann bedeutet das im einzelnen, dass man als Näherung für die diskrete Wahrscheinlichkeit den Wert nimmt, d.h., es ist

.

D.h., man gruppiert ein Intervall der Länge 1 zentral um die bewusste Stelle .

Für ein ganzes Intervall von diskreten Werten folgt dann entsprechend für ganze Zahlen

.

Ersetzt man < durch <. dann ergeben sich entsprechend die Varianten





.

Wohlgemerkt, dies setzt ganze Zahlen voraus, sowie auf den ganzen Zahlen diskret verteilte voraus!!!


Das Kreuz ist, dass viele nicht die diskrete Zufallsgröße von der sie approximierenden stetig normalverteilten Zufallgröße gedanklich trennen können: Bei letzterer ist es wie bei jeder stetigen Zufallgröße tatsächlich völlig egal, ob man Intervalle offen oder geschlossen betrachtet - bei einer diskreten Zufallsgröße wie aber nicht!
Meggo0 Auf diesen Beitrag antworten »

Hallo HAL 9000,

um das auf die Aufgabe zu transferieren...

dann müsste ich bei

a) noch + 0,5 rechnen! Warum wurde das dann hier weggelassen?

b) Ausgang: P(50<X<=70) bzw. P(50<X<71). Wie würde es dann bei der b) aussehen?
HAL 9000 Auf diesen Beitrag antworten »

Zitat:
Original von Meggo0
dann müsste ich bei

a) noch + 0,5 rechnen! Warum wurde das dann hier weggelassen?

Warum, warum... Weil HansS dort inkonsequenterweise da die Stetigkeitskorrektur eben nicht angewandt hat.

Zitat:
Original von Meggo0
b) Ausgang: P(50<X<=70) bzw. P(50<X<71). Wie würde es dann bei der b) aussehen?

Ich hab doch die richtigen Formeln gerade genannt, und (wie ich jetzt erst sehe) vor paar Jahren oben auch schon. Dann setz doch einfach ein.
Neue Frage »
Antworten »



Verwandte Themen

Die Beliebtesten »
Die Größten »
Die Neuesten »