Lagrange Multiplikatoren/ Ableitung Skalarprodukt |
10.02.2018, 00:25 | alina94 | Auf diesen Beitrag antworten » | ||
Lagrange Multiplikatoren/ Ableitung Skalarprodukt ich habe gerade in einem Skript folgendes Optimierungsproblem. mit -Norm und Skalaprodukt. Als notwendige Bedingung hierfür soll sich dann mit Lagrange-Multiplikatoren ergeben: . Das zugehörige Lagrange Funktional dazu sollte ja sein . Ich nehme an, die geforderte Bedingung folgt dann aus der Ableitung des Funktionals nach , aber mir ist leider nicht klar, wie man jetzt das Skalarprodukt nach einer Funktion ableitet... Könnte da vielleicht jemand weiterhelfen? ![]() |
||||
10.02.2018, 08:15 | IfindU | Auf diesen Beitrag antworten » | ||
RE: Lagrange Multiplikatoren/ Ableitung Skalarprodukt Sei für festes die Abbildung definiert durch mit . Dann ist linear. Insbesondere ist für alle . Nach Definition der Frechet Ableitung ist also die Ableitung selbst (gilt natürlich ganz allgemein). |
||||
10.02.2018, 23:44 | alina94 | Auf diesen Beitrag antworten » | ||
RE: Lagrange Multiplikatoren/ Ableitung Skalarprodukt
Vielen Dank für die Antwort! Also Mit der Produktregel für die Fréchet-Ableitung käme ich beim anderen Term dann auf , insgesamt also , mit der Ableitung von nach . Jetzt muss ich allerdings irgendwo einen Fehler gemacht haben, da die 2 noch mit drin steht? Die gesuchte Bedingung müsste sich jetzt jedenfalls so interpretieren lassen, dass wir den stationären Punkt von bekommen, wenn , d.h. . |
||||
11.02.2018, 08:36 | IfindU | Auf diesen Beitrag antworten » | ||
RE: Lagrange Multiplikatoren/ Ableitung Skalarprodukt Nein, das hast du schon richtig gemacht. Dein ist bloss nicht das aus dem ersten Post, sondern um 2 skaliert. Der numerische Wert vom Lagrange-Multiplikator ist irrelevant und, schlimmer noch, abhängig von der Modellierung des Problems. Die Existenz ist das Entscheidene. Du hättest du Bedingung vor der Modelleriung zu umformen können. Dann hättest du das gleiche Lambda wie im ersten Post genommen. Hättest du danach noch die Wurzel gezogen bei der Modellierung, sähe die Gleichung sogar noch ein wenig anders aus. Usw. |
||||
12.02.2018, 01:09 | alina94 | Auf diesen Beitrag antworten » | ||
RE: Lagrange Multiplikatoren/ Ableitung Skalarprodukt
Puh, dann bin ich erleichtert... Danke nochmals ![]() |
|
Verwandte Themen
Die Beliebtesten » |
|
Die Größten » |
|
Die Neuesten » |
|